PXD Simulation and Optimisation Studies

<u>Z. Drásal</u>^{*}, A. Moll⁺, K. Prothmann⁺

with special thanks to: C. Kiesling⁺, A. Raspereza⁺, Prague people

* Charles University Prague ⁺ MPI Munich

ILC Software Framework – Summary

• <u>ILC software framework</u>:

- Mokka: Geant 4 based, full simulation toolkit using a realistic detector geometry (accessible via a MySQL database) \rightarrow output in *ascii* or *lcio* format
- LCCD: Conditions data framework for the ILC
- LCIO: Linear Collider I/O persistency framework, which defines a data model for ILC;
 concrete data format implementation Serial Input/Output (SIO) → output in *.slcio
 - API: in Fortran77, C++ and Java
- GEAR: Geometry description toolkit for ILC analysis and reconstruction software → output in *.*xml* file
- Marlin: ILC Modular C++ Analysis & Reconstruction tool that enables modular approach (using so-called processors) to development of analysis and reconstruction code based on LCIO
- Marlin Reco: Marlin based toolkit providing reconstruction algorithms for detector performance studies

17th-19th March 2009

ILC Software Framework – Scheme

Mokka – Super Belle Detector

• Realistic geometry of: **TUBE** (beam pipe), **VXD** (vertex detector: pixel and strip barrel part and strip "forward" part) and **CDC** (central drift chamber) implemented

Mokka – Beam Pipe Geometry

- **TubeSBelle**: geometry driver that describes a beam pipe for SBelle & SBelle upgrade
 - Cylindrical onion-like structure with option to be rotated around Y axis (by 22 mrad):
 - "vacuum"
 - inner gold layer (shielding against soft SR): 10 μ m
 - inner beryllium wall: 0.6 mm
 - cooling gap (filled with paraffin): 0.5 mm
 - outer beryllium wall: 0.35 mm

	R_{min} [mm] R_{max} [mm]	
SuperBelle	14.99	16.45
SuperBelleUpgr	8.54	10.00

Mokka – VXD Geometry – Pixel Ladders

VXDSBelle: realistic geometry driver for SBelle & SBelle upgrade – VXD
 Description: 2 layers (3 layers for upgrade) → ladders → Si sensors (50 µm) + rims (450 µm) + support (400 µm) + 12 switchers

	R [mm] # ladders		support
Pxl layer 0	13.00	8	no
Pxl layer 1	18.00	10	no
Pxl layer 2	22.00	12	yes

Mokka – VXD Geometry – Pixel Layers

- VXDSBelle: detail of pixel part for SBelle & SBelle upgrade
 - Layers with wind-mill structure
 - Option: rotate pixel layers with beam pipe (by 22 mrad)

Mokka – VXD Geometry – Strip Layers

VXDSBelle: driver used as well for strip part of VXD of SBelle & SBelle upgrade
 Description: 4 layers in barrel part + 2 layers in "forward" region - (stagger-like structure)
 → ladders → Si sensors (active part - 300µm) + Si rims (pasive part - 300µm)

	R [mm]	# ladders	# DSSDs
Strip layer 31 – barrel	45.15	6	3
Strip layer 32 – barrel	48.15	6	3
Strip layer 41 – barrel	70.15	6	5
Strip layer 42 – barrel	73.15	6	5
Strip layer 51 – barrel	100.15	12	5
Strip layer 52 – barrel-slanted	89.15	12	1
Strip layer 53 – barrel	103.15	12	5
Strip layer 54 – barrel-slanted	92.15	12	1
Strip layer 61 – barrel	137.15	12	6
Strip layer 62 – barrel-slanted	117.65	12	2
Strip layer 63 – barrel	140.15	12	6
Strip layer 64 – barrel-slanted	120.65	12	2

SBelle: strip layers – front view

Mokka – CDC Geometry

- **CDCSBelle:** realistic geometry driver (by P. Vanhoefer) describing central drift chamber for SBelle
 - Aluminium cylinder with cone-shaped inner parts filled with gas He/C₂H₆ (50:50)

361 mm

150 mm

1150 mm

172 mm

1120 mm

58

Radius – inner boundary Radius – inner-middle boundary Radius – outer boundary Radius – innermost sens. wire Radius – outermost sens. wire Number of sensitive layers

SBelle: CDC – front view

Mokka – Tracker Geometry

- Implemented tracker:
 - Pixel layers (VXD)
 - Strip layers (VXD)
 - CDC

Optimisation studies

• Geometry:

- 3 versions of detectors: Belle (SVD2), SuperBelle, SuperBelle upgrade
- Pixel detector geometry with:
 - bricked (B) or non-bricked (U) structure in R- Φ (250 pixels)
 - 2nd layer with silicon support structure (0.5 cm or 1 cm)
 - variable pixel size (VPS) or constant pixel size (CPS) along z axis
 - 1000 or 800 pixels along z axis @ integration time 10 μ s
 - 2000 or 1600 pixels along z axis @ integration time 20 μ s

• Particle muon gun:

- Momentum scan: 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0 GeV
- Polar angle scan: 20, 40, 60, 80 degrees
- Azimuthal angle: isotropic uniform smearing

• Pythia generator:

- J/ $\Psi \rightarrow \mu^{-}\mu^{+}$
- B decays

• Optimization studies ongoing – preliminary results presented here ...

Marlin & MarlinReco

• MarlinReco used – ILC software reconstruction package adapted for SBelle experiment

Marlin – SVD Digitization

- VTXDigitizer: MarlinReco pixel digitizer adapted A. Raspereza's VTXDigitizer
 - used for both pixel and strip sensors; no dedicated strip detector digitizer ghost hits are not simulated (plan to implement standalone strip digitizer)
 - Input: LCIO SimTrackerHits → Output: LCIO TrackerHits
 - <u>Processes:</u>
 - Global to local ref. system transformation
 - Ionisation points generated: energy loss fluctuation added \rightarrow e-h pairs along the path created
 - Signal points generated: e⁻ drift performed \rightarrow e⁻ Lorentz shift in mag. field of 1.5 T calculated
 - \rightarrow e⁻ diffusion calculated
 - Digits produced: pixels with signal bigger than threshold (2 x noise) found
 - noise for pixels set = 100 e
 - noise for strips set = 1200 e
 - Local to global ref. system transformation
 - Hits produced clustering performed
 - Resolution calculated
 - Background generated (see next slide)

Constant x Variable Pixel Size in Z

- Constant pixel size (CPS) in Z \rightarrow increasing resolution σ_{7}
- Variable pixel size (VPS) in Z \rightarrow resolution $\sigma_{z} \approx \text{ pitch/(S/N)}$ roughly constant
- Calculations: requirement for variable pad size in Z: zo/R = po/d → No = R/d -1/2
 zo = po(No + 1/2)
 - $z_{1} = po(No + 1/2) + p_{1}/2 \dots$
- "Sensors asymmetric" the same number of pixel rows on each side required

N = 1000	<i>po</i> [µm]	$p_n[\mu m]$	p_{m} [µm]	VPS scheme Radius ax	kis
Pxl layer 0	55.66	101.31	190.87	offZ	d‡
Pxl layer 1	87.81	93.86	177.16	<	
Pxl layer 2	111.6	n = 0	174.15		I - ladder length offZ - offset in Z R - layer radius d - ladder thickness p - pitch size
N = 800				(No+1) times	
Pxl layer 0	81.71	101.31	190.87	3~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Pxl layer 1	117.1	n = 0	177.5		R
Pxl layer 2	145.2	n = 0	174.15	θ	- Z avia

Results: CPS - Cluster Size for 1st Layer

• Constant pixel size: bricked versus unbricked structure for 1000 or 2000 pixels, 1GeV μ^-

Cluster size: SBelle - 1st pixel layer

Results: CPS - Cluster Size for 1st Layer

• Constant pixel size: bricked versus unbricked structure for 800 or 1600 pixels, 1GeV μ^{-1}

Cluster size: SBelle - 1st pixel layer

Results: CPS - Cluster Size for 2nd Layer

• Constant pixel size: bricked versus unbricked structure for 1000 or 2000 pixels, 1GeV μ^{-}

Results: CPS - Cluster Size for 2nd Layer

• Constant pixel size: bricked versus unbricked structure for 800 or 1600 pixels, 1GeV μ^{-1}

Cluster size: SBelle - 2nd pixel layer

2nd Open Meeting of SuperKEKB Collaboration

17th-19th March 2009

Results: CPS – Resolution for 1st Layer

• Constant pixel size: bricked versus unbricked structure for 1000 or 2000 pixels, 1GeV μ^{-}

Resolution: SBelle - 1st pixel layer

Results: CPS – Resolution for 1st Layer

Constant pixel size: bricked versus unbricked structure for 800 or 1600 pixels, 1GeV μ^{-1} •

Resolution: SBelle - 1st pixel layer

ϑ [deg]

17th-19th March 2009

Results: CPS – Resolution for 2nd Layer

• Constant pixel size: bricked versus unbricked structure for 1000 or 2000 pixels, 1GeV μ^{-}

50

ϑ [deg]

60

80

90

70

Resolution: SBelle - 2nd pixel layer

21

20

30

40

۹b

17th-19th March 2009

Results: CPS – Resolution for 2nd Layer

• Constant pixel size: bricked versus unbricked structure for 800 or 1600 pixels, 1GeV μ^{-1}

ϑ [deg]

Resolution: SBelle - 2nd pixel layer

22

Background at Belle & SuperBelle

- Main sources of background:
 - Synchrotron radiation background:
 - Soft SR \sim keV
 - Hard SR $\sim 40 \text{ keV}$
 - Particle background:
 - Brehmsstrahlung
 - Coulomb scattering with residual gas
 - Intra beam scattering (Touschek effect)
- Background rate estimate for Belle SVD2 inner layer (@ 20 mm) $\approx 23500 \text{ s}^{-1}\text{mm}^{-2}$
- Increase by factor of 6 expected at SuperBelle (initial phase)
- 1/R² dependence of background rate

- occupancy = rate · <cluster_size> · pixel_size · integration_time

	R [mm]	<i>rate</i> $[s^{-1}mm^{-2}]$	Occupancy	Occupancy	Occupancy	Occupancy
			CPS 2000	CPS 1600	CPS 1000	CPS 800
Pxl layer 0	13.00	340000				
Pxl layer 1	18.00	180000	2.2%	2.4%	1.7%	2.0%
Pxl layer 2	22.00	120000	1.6%	1.9%	1.3%	1.5%

Marlin – Tracking & Pattern Recognition

- Chain of MarlinReco Tracking processors (for more details ask A. Raspereza):
 - TrackCheater tracking based on MC information
 - MaterialDB defines material for Kalman filter
 - LEPTracking \rightarrow SiliconTracking \rightarrow FullLDCTracking
- Pattern recognition in CDC performed: inward search for continuous hit patterns compatible with helix hypothesis (DELPHI code)
- Fit CDC tracks with Kalman filter
- Perform separate pattern recognition in SVD
- Combine SVD tracks and CDC tracks
- Extrapolate track back to the PXD area
- Assign hits on backward helical road
- Refit track after inclusion of new hits using Kalman filtering

of $e^+e^+ \rightarrow B^+B^+$ event

17th-19th March 2009

2nd Open Meeting of SuperKEKB Collaboration

Results: Z0 Impact Param. Resolution Fit: SBelle – 2 Layer PXD

1600 x 2000_

2nd Open Meeting of SuperKEKB Collaboration

Results: D0 Impact Param. Resolution Fit: SBelle – 2 Layer PXD

1.2 1.4

1.8

 $p\beta^*sin(\theta)^{3/2}$ [GeV/c]

1.6

0.8

0.2

0

0.4

0.6

Results: Z0 Impact Param. Resolutions SBelle – 3 Layer PXD

X

• CPS, bricked structure in R- Φ , 2nd layer – 10 mm support bridge, **no background**

2nd Open Meeting of SuperKEKB Collaboration

17th-19th March 2009

Results: D0 Impact Param. Resolution SBelle – 3 Layer PXD

• CPS, bricked structure in R- Φ , 2nd layer – 10 mm support bridge, **no background**

800 x 1000

Summary

Particle generator:

- MC generator conversion from BASF (Belle AnalysiS Software) to HepEvt files prepared
- Mokka:
 - Realistic geometry of Tube (beam pipe), SVD (pixel + strip detectors) and CDC (central drift chamber) implemented for both SuperBelle & SuperBelle upgrade
 - Sensitive detector classes adapted
 - Geometry parameters defined inMySQL database (all optimization options prepared)

• Marlin:

- MaterialDB processor adapted to new geometry
- VTXDigitizer adapted to new geometry
- Tracking code adapted to new geometry

Optimisation studies ongoing ...

- Mass production @ Garching computing farm started
 - Resolution and cluster size studies performed (for different geometry options)
 - Impact parameter resolutions studied for Super Belle & Super Belle upgrade geometry
 - **Plans:** To perform studies for all possible geometry options with (and without) background to find out the optimal one ...

29